Part Number Hot Search : 
90130 ASJ72 ETL9320 AFE2000 RB050 MPC56 2SC10 BC1602B
Product Description
Full Text Search
 

To Download IRHG6110 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 93783E
IRHG6110 RADIATION HARDENED 100V, Combination 2N-2P-CHANNEL RAD-Hard HEXFET POWER MOSFET MOSFET TECHNOLOGY THRU-HOLE (MO-036AB)
TM (R)
Product Summary
Part Number Radiation Level RDS(on) IRHG6110 100K Rads (Si) 0.6 IRHG63110 300K Rads (Si) 0.6 IRHG6110 100K Rads (Si) 1.1 IRHG63110 300K Rads (Si) 1.1 ID CHANNEL 1.0A N 1.0A N -0.75A P -0.75A P
MO-036AB
International Rectifier's RAD-HardTM HEXFET(R) MOSFET Technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low RDS(on) and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.
Features:
n n n n n n n n n
Single Event Effect (SEE) Hardened Low RDS(on) Low Total Gate Charge Proton Tolerant Simple Drive Requirements Ease of Paralleling Hermetically Sealed Ceramic Package Light Weight
Absolute Maximum Ratings (Per Die)
Parameter
ID @ VGS = 12V, TC = 25C ID @ VGS = 12V, TC = 100C IDM PD @ TC = 25C VGS EAS IAR EAR dv/dt TJ T STG Continuous Drain Current Continuous Drain Current Pulsed Drain Current Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction Storage Temperature Range Lead Temperature Weight For footnotes refer to the last page
Pre-Irradiation
N-Channel
1.0 0.6 4.0 1.4 0.011 20 56 1.0 0.14 2.4 -55 to 150
o
P-Channel
-0.75 -0.5 -3.0 1.4
0.011
Units A
W
W/C
20 75 ~ -0.75 0.14 2.4
V mJ A mJ V/ns
C
300 (0.63 in./1.6 mm from case for 10s) 1.3 (Typical)
g
www.irf.com
1
07/17/01
IRHG6110
Pre-Irradiation
Electrical Characteristics For Each N-Channel Device @ Tj = 25C (Unless Otherwise Specified)
Parameter
BVDSS Drain-to-Source Breakdown Voltage BVDSS/T J Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage g fs Forward Transconductance IDSS Zero Gate Voltage Drain Current
Min
100 -- -- -- 2.0 0.7 -- -- -- -- -- -- -- -- -- -- -- --
Typ Max Units
-- 0.125 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 10 -- -- 0.7 0.6 4.0 -- 25 250 100 -100 11 3.0 4.0 20 16 65 45 -- V V/C V S( ) A
Test Conditions
V GS = 0V, ID = 1.0mA Reference to 25C, ID = 1.0mA VGS = 12V, ID = 1.0A VGS = 12V, ID = 0.6A VDS = VGS, ID = 1.0mA VDS > 15V, IDS = 0.6A VDS= 80V, VGS= 0V VDS = 80V, VGS = 0V, TJ =125C VGS = 20V VGS = -20V VGS =12V, ID = 1.0A, VDS = 50V VDD = 50V, ID = 1.0A, VGS =12V, RG = 7.5
IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD
Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (`Miller') Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance
nA
nC
ns
nH Measured from Drain lead (6mm /0.25in.
from package) to Source lead (6mm /0.25in. from package) with Source wires internally bonded from Source Pin to Drain Pad
Ciss Coss Crss
Input Capacitance Output Capacitance Reverse Transfer Capacitance
-- -- --
300 100 16
-- -- --
pF
VGS = 0V, VDS = 25V f = 1.0MHz
Source-Drain Diode Ratings and Characteristics (Per Die)
Parameter
IS ISM VSD t rr Q RR ton Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min Typ Max Units
-- -- -- -- -- -- -- -- -- -- 1.0 4.0 1.5 110 390
Test Conditions
A
V nS nC Tj = 25C, IS = 1.0A, VGS = 0V Tj = 25C, IF = 1.0A, di/dt 100A/s VDD 25V
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance (Per Die)
Parameter
RthJC RthJA Junction-to-Case Junction-to-Ambient
Min Typ Max Units
-- -- -- -- 17 90
C/W
Test Conditions
Typical socket mount
Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page
2
www.irf.com
Pre-Irradiation
IRHG6110
Electrical Characteristics For Each P-Channel Device @ Tj = 25C (Unless Otherwise Specified)
Parameter
BVDSS Drain-to-Source Breakdown Voltage BVDSS/T J Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage g fs Forward Transconductance IDSS Zero Gate Voltage Drain Current
Min
-100 -- -- -- -2.0 0.6 -- -- -- -- -- -- -- -- -- -- -- --
Typ Max Units
-- -0.11 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 10 -- -- 1.2 1.1 -4.0 -- -25 -250 -100 100 15 4.0 4.3 22 19 66 51 -- V V/C V S( ) A
Test Conditions
VGS = 0V, ID = -1.0mA Reference to 25C, ID = -1.0mA VGS = -12V, ID = -0.75A VGS = -12V, ID =- 0.5A VDS = VGS, ID = -1.0mA VDS > -15V, IDS = -0.5A VDS= -80V, VGS= 0V VDS = -80V, VGS = 0V, TJ =125C VGS = - 20V VGS = 20V VGS = -12V, ID = -0.75A, VDS = -50V VDD = -50V, ID = -0.75A, VGS = -12V, RG = 24
IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD
Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (`Miller') Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance
nA
nC
ns
nH Measured from Drain lead (6mm /0.25in.
from package) to Source lead (6mm /0.25in. from package) with Source wires internally bonded from Source Pin to Drain Pad
Ciss Coss Crss
Input Capacitance Output Capacitance Reverse Transfer Capacitance
-- -- --
335 100 22
-- -- --
pF
VGS = 0V, VDS = 25V f = 1.0MHz
Source-Drain Diode Ratings and Characteristics (Per Die)
Parameter
IS ISM VSD t rr Q RR ton Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min Typ Max Units
-- -- -- -- -- -- -- -- -- -- -0.75 -3.0 -2.5 90 257
Test Conditions
A
V nS nC Tj = 25C, IS = -0.75A, VGS = 0V Tj = 25C, IF = -0.75A, di/dt -100A/s VDD -25V
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance (Per Die)
Parameter
R thJC RthJA Junction-to-Case Junction-to-Ambient
Min Typ Max Units
-- -- -- -- 17 90
C/W
Test Conditions
Typical socket mount
Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page
www.irf.com
3
IRHG6110
Radiation Characteristics Pre-Irradiation
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-39 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics For Each N-Channel Device @ Tj = 25C, Post Total Dose Irradiation
Parameter
BVDSS V GS(th) IGSS IGSS IDSS RDS(on) RDS(on) VSD Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source On-State Resistance (TO-39) Static Drain-to-Source On-State Resistance (MO-036AB) Diode Forward Voltage
100K Rads(Si)1
300K Rads (Si)2
Units V nA A V
Test Conditions
VGS = 0V, ID = 1.0mA VGS = VDS, ID = 1.0mA VGS = 20V VGS = -20 V VDS= 80V, VGS =0V VGS = 12V, ID = 0.6A VGS = 12V, ID = 0.6A VGS = 0V, IS =1.0A
Min 100 2.0 -- -- -- -- -- --
Max -- 4.0 100 -100 25 0.56 0.60 1.5
Min 100 1.25 -- -- -- -- -- --
Max -- 4.5 100 -100 25 0.66 0.70 1.5
1. Part number IRHG6110 2. Part number IRHG63110
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area (Per Die)
Ion Cu Br LET MeV/(mg/cm2)) 28.0 36.8 Energy (MeV) 285 305 Range (m) 43.0 39.0 VDS (V) @VGS=0V @VGS=-5V @VGS=-10V 100 100 100 100 90 70 @VGS=-15V 80 50 @VGS=-20V 60 --
120 100 80 VDS 60 40 20 0 0 -5 -10 VGS -15 -20 -25 Cu Br
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
4
www.irf.com
Radiation Characteristics Pre-Irradiation
IRHG6110
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-39 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics For Each P-Channel Device @ Tj = 25C, Post Total Dose Irradiation
Parameter
BVDSS VGS(th) IGSS IGSS IDSS RDS(on) RDS(on) VSD Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source On-State Resistance (TO-39) Static Drain-to-Source On-State Resistance (MO-036AB) Diode Forward Voltage
100K Rads(Si)1
300K Rads (Si)2
Units V nA A V
Test Conditions
VGS = 0V, ID = -1.0mA VGS = VDS, ID = -1.0mA VGS = -20V VGS = 20 V VDS=-80V, VGS =0V VGS = -12V, ID =-0.5A VGS = -12V, ID =-0.5A VGS = 0V, IS = -0.75A
Min -100 - 2.0 -- -- -- -- -- --
Max -- - 4.0 -100 100 -25 1.06 1.1 -2.5
Min -100 -2.0 -- -- -- -- -- --
Max -- -5.0 -100 100 -25 1.06 1.1 -2.5
1. Part number IRHG6110 2. Part number IRHG63110
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area (Per Die)
Ion Cu Br I LET MeV/(mg/cm2)) 28.0 36.8 59.8 Energy (MeV) 285 305 343 Range (m) 43.0 39.0 32.6 VDS (V) @VGS=0V @VGS=5V -100 -100 -100 -100 -60 -- @VGS=10V -100 -70 -- @VGS=15V @VGS=20V -70 -60 -50 -40 -- --
-120 -100 -80 VDS -60 -40 -20 0 0 5 10 VGS 15 20 Cu Br I
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
5
IRHG6110 N-Channel Q1,Q3
100
Pre-Irradiation
I D , Drain-to-Source Current (A)
10
I D , Drain-to-Source Current (A)
VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V TOP
100
10
VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V TOP
1
5.0V
1
5.0V
0.1
0.1
0.01 0.1
20s PULSE WIDTH T = 25 C
J 1 10 100
0.01 0.1
20s PULSE WIDTH T = 150 C
J 1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
3.0
R DS(on) , Drain-to-Source On Resistance (Normalized)
ID = 1.0A
I D , Drain-to-Source Current (A)
2.5
TJ = 25 C
10
2.0
1.5
TJ = 150 C
1.0
0.5
1 5 7 9
V DS = 50V 20s PULSE WIDTH 11 13 15
0.0 -60 -40 -20
VGS = 12V
0 20 40 60 80 100 120 140 160
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
6
www.irf.com
Pre-Irradiation N-Channel Q1,Q3
500
IRHG6110
VGS , Gate-to-Source Voltage (V)
400
VGS Ciss Crss Coss = 0V, f = 1MHz = Cgs + Cgd , Cds SHORTED = Cgd = Cds + Cgd
20
ID = 1.0A
16
VDS = 80V VDS = 50V VDS = 20V
C, Capacitance (pF)
300
Ciss
12
200
C oss
100
8
4
C rss
0 1 10 100
0 0 4
FOR TEST CIRCUIT SEE FIGURE 13
8 12 16
VDS , Drain-to-Source Voltage (V)
QG , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100
10
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY R
DS(on)
100us
10
I D , Drain Current (A)
1ms
1
TJ = 150 C
1
10ms
TJ = 25 C V GS = 0 V
0.5 1.0 1.5 2.0 2.5 3.0
0.1 0.0
0.1
TC = 25 C TJ = 150 C Single Pulse
1 10 100 1000
VSD ,Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
www.irf.com
7
IRHG6110 N-Channel Q1,Q3
1.0
Pre-Irradiation
V DS VGS
RD
D.U.T.
+
0.8
RG
I D , Drain Current (A)
-V DD
0.6
VGS
Pulse Width 1 s Duty Factor 0.1 %
0.4
Fig 10a. Switching Time Test Circuit
0.2
VDS 90%
0.0 25 50 75 100 125 150
TC , Case Temperature ( C)
10% VGS
td(on) tr t d(off) tf
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10b. Switching Time Waveforms
100 D = 0.50
Thermal Response (Z thJA )
0.20 10 0.10 0.05 0.02 0.01 1
SINGLE PULSE (THERMAL RESPONSE) 0.1 0.0001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = P DM x Z thJA + TA 10 100 0.1 1
P DM t1 t2 1000
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
8
www.irf.com
Pre-Irradiation N-Channel Q1,Q3
150
IRHG6110
EAS , Single Pulse Avalanche Energy (mJ)
15V
120
ID 0.45A 0.63A BOTTOM 1.0A TOP
VDS
L
D R IV E R
90
RG
D .U .T.
IA S tp
+ V - DD
A
VGS 20V
60
0 .01
30
Fig 12a. Unclamped Inductive Test Circuit
0 25 50 75 100 125 150
V (B R )D S S tp
Starting TJ , Junction Temperature ( C)
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50K
QG
12V
.2F .3F
12 V
QGS VG QGD
VGS
3mA
D.U.T.
+ V - DS
Charge
IG
ID
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
www.irf.com
9
IRHG6110 P-Channel Q2,Q4
100
Pre-Irradiation
-I D , Drain-to-Source Current (A)
10
-I D , Drain-to-Source Current (A)
VGS -15V -12V -10V -9.0V -8.0V -7.0V -6.0V BOTTOM -5.0V TOP
100
10
VGS -15V -12V -10V -9.0V -8.0V -7.0V -6.0V BOTTOM -5.0V TOP
-5.0V
1
-5.0V
1
0.1
0.1
0.01 0.1
20s PULSE WIDTH T = 25 C
J 1 10 100
0.01 0.1
20s PULSE WIDTH T = 150 C
J 1 10 100
-VDS , Drain-to-Source Voltage (V)
-VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
3.0
R DS(on) , Drain-to-Source On Resistance (Normalized)
ID = -0.75A
-I D , Drain-to-Source Current (A)
2.5
TJ = 25 C
10
2.0
1.5
TJ = 150 C
1.0
0.5
1 5 7 9
V DS = -50V 20s PULSE WIDTH 11 13 15
0.0 -60 -40 -20
VGS = -12V
0 20 40 60 80 100 120 140 160
-VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
10
www.irf.com
Pre-Irradiation P-Channel Q2,Q4
600
IRHG6110
500
-VGS , Gate-to-Source Voltage (V)
VGS Ciss Crss Coss = = = = 0V, f = 1MHz Cgs + Cgd , Cds SHORTED Cgd Cds + Cgd
20
ID = -0.75A
16
C, Capacitance (pF)
VDS =-80V VDS =-50V VDS =-20V
400
Ciss
300
12
8
200
C oss C rss
100
4
0 1 10 100
0 0 2 4 6
FOR TEST CIRCUIT SEE FIGURE 13
8 10 12 14
-VDS , Drain-to-Source Voltage (V)
Q G , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100
10
-ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY R
DS(on)
10
TJ = 150 C
-ID , Drain Current (A) I
1ms
1
TJ = 25 C
1
10ms
0.1 0.0
V GS = 0 V
1.0 2.0 3.0 4.0 5.0
0.1
TC = 25 C TJ = 150 C Single Pulse
1 10 100 1000
-VSD ,Source-to-Drain Voltage (V)
-VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
www.irf.com
11
IRHG6110 P-Channel Q2,Q4
0.8
Pre-Irradiation
V DS VGS
RD
0.6
D.U.T.
+
-ID , Drain Current (A)
0.5
VGS Pulse Width 1 s Duty Factor 0.1 %
0.3
Fig 10a. Switching Time Test Circuit
0.2
td(on) tr t d(off) tf
VGS
0.0 25 50 75 100 125 150
10%
TC , Case Temperature ( C)
90%
Fig 9. Maximum Drain Current Vs. Case Temperature
VDS
Fig 10b. Switching Time Waveforms
100 D = 0.50
Thermal Response (Z thJA )
0.20 10 0.10 0.05 0.02 0.01 1
SINGLE PULSE (THERMAL RESPONSE) 0.1 0.0001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = P DM x Z thJA + TA 10 100 0.1 1 1000
P DM t1 t2
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
12
www.irf.com
-
RG
V DD
Pre-Irradiation P-Channel Q2,Q4
VDS
L
IRHG6110
200
EAS , Single Pulse Avalanche Energy (mJ)
RG
D .U .T.
IA S
VD D A D R IV E R
160
-20V VGS
ID -0.34A -0.47A BOTTOM -0.75A TOP
tp
0.0 1
120
15V
80
Fig 12a. Unclamped Inductive Test Circuit
40
IAS
0 25 50 75 100 125 150
Starting TJ , Junction Temperature ( C)
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
tp V (BR)DSS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50K
QG
-12V 12V
.2F .3F
-12V
QGS VG QGD
VGS
-3mA
Charge
IG
ID
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
www.irf.com
+
D.U.T.
-
VDS
13
IRHG6110
Pre-Irradiation
Footnotes:
Repetitive Rating; Pulse width limited by
maximum junction temperature. VDD = 25V, starting TJ = 25C, L= 112mH, Peak IL = 1.0A, VGS = 12V ISD 1.0A, di/dt 187A/s, VDD 100V, TJ 150C Pulse width 300 s; Duty Cycle 2%
Total Dose Irradiation with VGS Bias.
12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A Total Dose Irradiation with VDS Bias. 80 volt VDS applied and VGS = 0 during irradiation per MlL-STD-750, method 1019, condition A ~ VDD = - 25V, starting TJ = 25C, L= 267mH, Peak IL = - 0.75A, VGS = -12V ISD - 0.75A, di/dt - 132A/s, VDD -100V, TJ 150C
Case Outline and Dimensions -- MO-036AB
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 07/01
14
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRHG6110

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X